Gottfried Wilhelm Leibniz hayatı,bilim adamlarının hayatları,Got


Gottfried Wilhelm Leibniz hayatı,bilim adamlarının hayatları,Got


2007-01-06 18:27:00
Gottfried Wilhelm Leibniz

 hayatı (1646-1716 )

    "Ben de o kadar fikir var ki, eğer benden daha iyi görmesini bilenler bir gün onları derinleştirecek ve benim zihin emeğime kendi kafalarının güzelliğini katacak olurlarsa, sonraları belki bir işe yarayabilir" diyen Gottfried Wilhelm Leibniz, 1 Temmuz 1646 günü Leibzig'de doğdu. Ancak yetmiş yıl yaşadı. 14 Kasım 1716 yılında Hannover'de öldü. Babası ahlak ilmi öğretmeni olup üç nesilden beri Saksonya hükümetine hizmet etmiş bir aileden geliyordu. Bu nedenle, Leibniz'in ilk yılları oldukça ağır bir politika ile yüklü bir bilgiçlik havası içinde geçti.
 
Leibniz altı yaşındayken babasını kaybetti. Tarih hevesini babasından almıştı. Leipzig'de bir okula devam ediyordu. Babasının geniş kütüphanesinde bulunan çok sayıdaki kitapları sürekli okuyordu. Sekiz yaşında Latince'ye başladı. On iki yaşına gelince, Latince şiir yazacak kadar bu dilini ilerletti. Latince dilini öğrendikten sonra, kendi gayreti ile Yunan'ca öğrendi. Bu devirdeki zihni ve zekası Descartes'e benziyor ve çok iyi işliyordu.
 
           Klasik çalışmalardan usandığı için mantık ilmine başladı. On beş yaşından küçük olan bu çocuğun, klasiklerin ve skolastik Hıristiyanların büyüklerinin ortaya koyduğu mantığı düzeltmek için "Characteristica Universalis" adlı ilk denemesini verdi. Couturat, Russell ve başkalarının. dediği gibi, bu eser metafiziğin anahtarıdır. Yine İngiliz matematikçisi Boole'un söylediği gibi, kendisinin yarattığı sembolik mantık, Leibniz'in Characteristica'sının bir parçasıdır.

          Leibniz, on beş yaşındayken Leipzig Üniversitesine bir hukuk öğrencisi olarak girdi. Zamanının tümünü hukuka vermiyordu. İlk iki yıl içinde birçok felsefe eseri okudu. Zamanının filozofları olan Kepler, Galile ve Descartes'ın keşfettikleri yeni dünya hakkında bilgiler edindi. Sonuçta, matematik öğrenmeden bu ilimleri kavramının olanaksız olduğu kanaatine vardı. 1663 yılının yazını Jena Üniversitesinde geçirdi. Orada matematikçi olan Erhard Weigel'in derslerini izledi.

          Leibzig'e dönünce yeniden hukuka başladı. 1666 yılında yirmi yaşındayken doktora sınavı için hazırdı. Oysa, aynı yıllarda Newton, Woolsthorpe'ta bir köyde diferansiyel ve integral hesap ve genel çekim kanununu oluşturacak olan düşüncelere dalmıştı. Bu konuda Leibniz de geç kalmış sayılmazdı. Onu bu ateşe itecek ve tutuşturacak bir kıvılcımın çıkması gerekiyordu. Bu kıvılcım da, o zamanın Avrupa'sının ilme karşı görevini yerine getirme isteğiydi.

  
     Leibniz'e gıpta eden titiz Leipzig Fakültesi ona resmen gençliğinden, gerçekte tüm profesörlerden fazla hukuk bildiğinden dolayı, doktora ünvanını vermeyi kabul etmedi. Halbuki, 1863 yılında on sekiz yaşındayken parlak bir tezle başölye ünvanını almıştı. Leipzig Fakültesinde egemen olan mistik düşünceden iğrenen Leibniz, doğduğu şehri bırakıp Nürnberg'e gitti. 5 Kasım 1666 yılında Alfdorf Üniversitesine bağlı Nürnberg Üniversitesi Tarihi Yöntem adlı çalışmasından dolayı doktora ünvanını verdi. Aynı zamanda hukuk kürsüsünü de kabul etmesini rica etti.

         

       Descartes kendisine verilen generallik ünvanını kabul etmemişse, Leibniz de öneriye yanaşmayıp isteklerinin ne olduğunu söylememişti. Fakat bu arzuların küçük prenslerin lehine çene yarıştırmak olduğuna ihtimal verilmezse de tarih bir süre sonra kendisini bu adamlara bağlamıştır. Leibniz'in hayatındaki bu acıklı öykü, kanun adamlarına, ilim adamlarından önce rastlamış olmasıdır.

 
 
Leibniz, hukuk derslerinin düzeltilmesi üzerine yazdığı kitabı, Leipzig'den Nürnberg'e olan bir seyahatinde kaleme almıştı, Bu da, Leibniz'in hangi koşullarda olursa olsun, durmadan okuması, yazması ve düşünmesini gösteren örneklerden biridir. O, durmadan okurdu, yazardı ve düşünürdü. Matematik çalışmalarının çoğunu kendisini çağıran aristokratlara giderken çağın o kötü yollarında kötü arabalar içinde sallana sallana giderken yollarda yazmıştır. Bu çalışmalarının tümü bugün Hannover kütüphanesinde bağlı olarak durur, Kimse de ona yanaşıp el atamaz. Çünkü, bunlar araştırmak için araştırıcı bir ordunun sabırlı bir çalışması gereklidir.
 
Bu eserler ve fikirler o kadar çoktur ki, yayınlanmış veya yayınlanmamış fikirlerin yalnız bir tek kafadan çıktığına bile inanmak zordur. Bu kadar eseri düşünüp yazan kafa frenelog ve anatomistlerin dikkatini çekmiştir. Bir söylentiye göre, Leibniz'in kafasını mezardan çıkarıp ölçmüşler, incelemişler ve normal bir adamın kafasından pek küçük olduğunu görmüşlerdir. Gerçekten de, sağlığında da kafasının ölçüleri fazla büyük değildi. Bu kadar küçük kafalı olup da sürekli okuyan, düşünen ve yazan bir kimse dünyaya az gelmiştir.
 

1666 yılında olasılıklar kuramına başladı. Bu sıralarda öğrenciydi. Okuduğu her alanda olduğu gibi, bu sahada da eser veriyordu. Matematik, Leibniz'in parlak zekasının fışkırdığı bir sahadır. Bundan başka, hukuk, din, siyaset, tarih, edebiyat, mantık, metafizik ve kuramsal felsefe konularında sayısız eser bırakmıştır. Bundan dolayı kendisine evrensel deha denmektedir. Onun evrensel bir deha oluşu, diferansiyel ve integral hesaptaki sürekliliği, olasılıklar kuramında ise süreksizliği analize sokmasındadır. Zaten Newton'la ayrıldığı nokta da olasılıklar kuramıdır. Verimsiz gibi görünen soyut olasılıklar kuramının öncüsü Leibniz'dir. Doğru düşünme dediğimiz mantık anatomisinin ve fikirlerin kanunlarının bir olasılık analizi olduğunu görebilmiştir.


          Newton'da, yüzyılının matematik düşünme yöntemi belirli bir şekil ve varlık halini almıştır. Cavalieri (1598-1647), Fermat (1601-1665), Wallis (1616-1703), Barrow (1630 -1677) ve başkalarının çalışmalarından sonra, diferansiyel ve integral hesabın oluşturulmasından kaçınılmazdı. Matematik bu olgunluğa gelmişti. Archimedes'ten bu yana da 2000 yıllık bir gecikme de olmuştu. İşte Leibniz, Newton gibi sonsuz küçükler hesabını billurlaştırdı. Leibniz, zamanının düşünme şeklini ifade eden bir araçtan çok daha büyük bir varlıktı. Matematikte Newton bu dereceye varamadı. Leibniz, matematik ve mantık alanında çağının iki yüzyıl ilerisindeydi. Diferansiyelin geometrik bir yorumunu verdi. Bu, matematiğe en büyük hizmetti. Süreklilik ve süreksizlik ya da analitik veya olasılıklar gibi matematik düşüncenin iki karşıt alanında fikir yürütmüş bir kimseye ne Leibniz'den önce ve ne de Leibniz'den sonra matematik tarihinde rastgelinememiştir. Leibniz'in olasılıklar kuramındaki çalışmaları onun yaşamı sürecinde değerlendirilememiştir. Hatta bir yerde taktir de edilememiştir. Ancak, on dokuzuncu yüzyılda Boole'un çalışmalarından sonra değer kazanarak yerini almıştır.Yirminci yüzyılda Whitehead ve Russell'ın çalışmaları, Leibniz'in evrensel bir gösterim hakkındaki hayalinin kısmen gerçekleştirilmesi olmuştur. İşte, ancak o devirde Leibniz'in tam istediği üstünlükte, ilmi ve matematik düşünme biçimi için, matematiğin olasılılıklar tarafının yüksek önemi gözüktü. Bugün, Leibniz'in olasılıklar yöntemi, gösterim mantığı ve gelişmelerinde meydana çıkarıldığı biçimde analiz için, analizin kendisi kadar önemlidir. O zaman, Leibniz ve Newton analizi bugünkü karışıklığın yoluna koymuşlardı. Çünkü, gösterim yöntemi, matematik analizi Zeno'dan beri temellerinden sarsan çelişkilerden ayırabilmek için biricik genel hal çaresini verir.
 
 

          Leibniz, olasılıklar kuramı için Fermat ve Pascal'ın çalışmalarını da okumuştu. Onların bu yöndeki çalışmalarını daha da ileri götürmeyi düşünüyordu. Fakat, diferansiyel ve integral hesap daha çekiciydi. Bu hesabın gelişmesi ve uygulamaları on sekizinci yüzyıldaki matematikçileri de inanılmaz bir biçimde kendisine çekmiştir. Sonra, 1910 yılına kadar bugünkü fikirleri kabul etmeyen bazı kimseler hariç, onun olasılıklar analizi kimse tarafından bilinmedi. Leibniz'in gösterime bağlı düşünme fikri ancak Whitehead ve Russell'ın Principia Mathematica'larıyla gerçekleşti. 1910 yılından sonra, Leibniz'in bu programı, modern matematiğin en fazla ilgiyi çeken noktalardan biri oldu. Bugün bile bu konuda oldukça ciddi çalışmalar yapılmaktadır. Her doğru düşünmeyi bir gösterimle ifade etme fikrini Leibniz tek başına da yapmamıştır. Zaten bu proje daha yapılmamıştır. Leibniz tüm bunları düşünmüş ve bu alanda cesaret verici bir girişimde bulunmuştur. Fakat, değersiz şan ve gereksiz ünden çok, parasal olanaklar elde etmek için, küçük prenslerine karşı olan bağlılığı fikrinin evrenselliğine ve son yıllarını dolduran tartışmalar, Newton'un Principia'sına benzer bir şaheser yaratmasına engel oldu. Leibniz'in başardıklarını kısaca gözden geçirirken içinde birinci derecede bir matematikçi yeteneğinden çok daha fazla bir varlık sarf edilen bu para düşkünlüğünün derin izlerini göreceğiz. Newton hakkı olmayarak halkın kendisine şöhret verilmesini isteyen bir tutumu vardı. Gauss ise, fikirce kendisinden aşağıda olan insanların dikkatini çekmek için büyük eserinden uzaklaşması tutumunu sürdürmüştü.
Tüm büyük matematikçiler arasında böyle zayıf tarafları görülmeyen tek matematikçi, Archimedes'ti. O, birçok kimsenin erişmek istediği aristokrat gibi yüksek bir zümrenin çocuğuydu ve bu nedenle de oldukça alçak gönüllüydü. Leibniz'e gelince, kendini kullanan aristokratlardan bol bol para alıyordu. Bu şekildeki para kazanmalar Leibniz'in matematiğinin daha çok ilerlemesine bir engeldi. Gauss'un söylediği gibi, Leibniz, matematik bilgisinin çoğunu boş yere israf etmiştir. Her ne olursa olsun, Leibniz bir değil birçok hayat yaşamıştır. Sadece diplomatik alanda yaptığı işler, bir insanın hayatını doldurmaya yeter. Şüphesiz, bu çok yönlü yaşamın sonu gelmedi. Eğer onun eğildiği her konuda verdiği eserleri toplayacak büyük adamlar olsaydı, bugünkü ilim ve özellikle matematik tarihi bambaşka olurdu. Bunun yerine, yirmi yaşında Mainz Elektörü için bir hukuk danışmanı ve hatırı sayılır bir ticaret memuru oldu.


           1672 yılına kadar, modern matematik hakkında çok az şey biliniyordu. Yirmi altı yaşına gelince, Paris'te fizikçi Christian Huygens'e (1629 -1695) rastladı. Saatler kuramı ve ışığın dalga kuramının kurucusu olan Huygens aynı zamanda iyi bir matematikçiydi. Leibniz'e sarkaç üzerinde yaptığı çalışmaları gösterdi. Huygens'in kendisine dersler vermesini istedi ve onun bu isteği Huygens tarafından kabul edildi. Doğuştan bir matematikçi olan Leibniz'in dehası, Huygens'in verdiği dersler altında parlamaya başladı. 1673 yılının ocak ayından Mart ayına kadar İngiltere'ye yaptığı seyahatler süresince derslere ara verildi. İngiliz matematikçilerinin bazılarına yaptığı çalışmaları gösterdi. Böylece onlarla tanıştı.
          Leibniz, Londra'da kaldığı süre içinde Royal Society'nin toplantılarına katıldı. Orada, kendisinin yaptığı hesap makinesini ve diğer keşiflerini sundu. 1673 yılında Royal Society'nin ilk yabancı üyesi oldu. Buna karşın, Newton da, 1700 yılında Paris'teki İlimler Akademisinin ilk yabancı üyesi seçildi. Londra'ya dönünce, Huygens ona matematik çalışmalarına devam etmesini öğütledi; 1675 yılında diferansiyel hesabın bazı basit formüllerini çıkarmış, yine kendi sözüne göre, temel teoremi keşfetmişti. Fakat bu teorem ancak 11 Temmuz 1677 yılından önce yayınlanmadı.

 
 
Newton da eserini Leibniz'in eseri yayınlandıktan sonra yayınladı. Leibniz, 1682 yılında kurduğu ve baş yazarlığını yaptığı Acta Eruditorum'da imzasız yazdığı bir yazı ile Newton'un sert bir eleştirisini yapınca kıyametler koptu ve aralarındaki tartışma ciddi boyutlara ulaştı. 1677 ile 1704 yılları arasında, Leibniz'in yaptığı çalışmalar tüm Avrupa'da yayıldı. Özellikle, İsviçre'li Jacques ve Jean Bernoulli'nin bu matematiğin yayılmasında çok fazla yararları oldu. Halbuki, İngiliz'ler Newton'un çalışmalarını devam ettirmediler. Bu nedenle de İngiltere'den uzun yıllar matematikçi çıkmadı.

          Leibniz'in son kırk yılı, aşağı yukarı Brunswick ailesine hizmetle geçti. Bu aile için bir arşivci, soylarını çıkaran bir tarihçi olarak çalışıyordu. Efendilerinin çıkarları için eski evrakları çıkarıyor ve yerine göre de ustaca tarihi gerçekleri saptırmak için silinti ve kazıntı bile yapıyordu. 1687 ile 1690 yılları arasında tarihi araştırmalar yapmak amacıyla tüm Almanya'yı, Avusturya'yı ve İtalya'yı gezdi.
         
          İtalya'da bulunduğu sırada Roma'yı ziyaret etti. Papa tarafından Vatikan'ın kütüphanecilik görevini almaya davet edildi. Koşullardan ilki Katolik olması ile ilgili olduğundan, bu görevi Leibniz kabul etmeyerek geri çevirdi. Bir ara Katoliklerle Protestanları barıştırmak için 1683 yılında Hannover'de toplanıldı. Fakat bir barış sağlanamadı. Leibniz'in bu ve bundan sonraki barıştırma ve birleştirme çalışmaları da sonuç vermedi. 1688 yılında Katoliklerle Protestanlar arasında İngiltere'de kanlı çarpışmalar oldu. Her iki tarafın karşılıklı suçlamaları ve kötülemeleri altında bu mezhep kavgaları sürüp gitti. Bu kavgalardan zarar gören birçok matematikçi de vardır.

          Leibniz'in uğraştığı konuların tam bir listesini vermek olanaksızdır. İktisat, filoloji, devletler hukuku, maden ocakları yapımı, teoloji, sayısız akademinin kurulması ve geliştirilmesi gibi her şeye el atmıştır. Onun en az başarılı olduğu saha mekanik ve fizikti. En önemli eserleri içinde birçok akademiyi kurması ve onları çalıştırması sayılabilir.

          Altmış sekiz yaşına doğru iyice Çöktü. Eski zekası kalmadı. Sanki bir gölge haline gelmişti. Hastaydı. Çok çabuk ihtiyarlıyordu. Tüm hayatınca prenslere hizmet etmiş olan Leibniz, bu hizmetlerin karşılığını görüyordu. Tartışmalardan bıkmış ve kendisi de çökmüştü. Daha önce hizmetini yürüttüğü George Louis, onu kabul etmiyor ve Hannover kütüphanesine gidip ünlü Brunswick ailesinin yanına dönmesini öğütlüyordu. Üç yüz yıllık bir tarih zamanını inceledikten sonra bu tarihi 1005 yılından öteye götüremedi. Tarihte diplomatça bazı değiştirmeler de yapmıştır. Bu da onun saygınlığına biraz gölge düşürmüştür. Leibniz'in bu el yazmalarını da tam olarak inceleyecek kimse çıkmamıştır.

          Bu kadar çok yönlü olan Leibniz, yetmiş yaşına gelince, 14 Kasım 1716 günü Hannover'de öldü. Bizde, matematiğe yaptığı sayısız hizmetleriyle yaşamaktadır.

 

alıntıdır...

540
0
0
Yorum Yaz
yabancı hit şarkılar